近年來,基于這種三維不規(guī)則數據的深度學習發(fā)展迅速,而圖卷積神經網絡應對三維不規(guī)則數據的表現尤為突出[2]。
在計算機圖形學中,為了虛擬化真實世界的物體(如人或者動物等),三維形狀通常需要離散化為網格(mesh),用于真實感渲染。但是,因為設備的差異或采集方式的不同,很難針對單個三維形狀得到的相同的離散化方式(固定的分辨率和連接關系)。這種同一個形狀具有不同的離散化方式是計算機圖形學有別于其他學科的一個重要特點,而現有的圖神經網絡無法有效統(tǒng)一不同離散化下的特征,這極大地限制了圖神經網絡在圖形學領域的發(fā)展。
那么,如何解決這一問題呢?
自動化所團隊提出了一種新穎的多尺度圖卷積神經網絡,重點解決了傳統(tǒng)圖卷積神經網絡中圖節(jié)點學習到的特征對圖分辨率和連接關系敏感的問題。該方法可以實現在低分辨率的三維形狀上學習特征,在高低分辨率形狀之上進行測試,并且保持不同分辨率特征的一致性。
01 研究背景
傳統(tǒng)的圖卷積神經網絡通常聚集1-鄰域(GCN),k-環(huán)鄰域(ChebyGCN)或k-近鄰鄰域(DGCNN)的信息,所以其感受野與分辨率或者圖連接關系是相關的。也就是說,在三維形狀的不同離散化下,卷積的感受野對應的形狀語義范圍產生了較大的變化。如何解決這種卷積方式未考慮到針對不同離散化情況所產生的問題,存在較大的挑戰(zhàn)。
02 方法簡述
為解決現有圖卷積神經網絡的問題,團隊設計了一種多尺度圖卷積神經網絡(multiscale graph convolutional network,MGCN)。如圖1所示,我們發(fā)現,針對不同分辨率和連接關系的離散化,三維圖譜小波函數表現出極佳的魯棒性,并且不需要計算測地距離。因此,我們設計將多尺度的小波函數嵌入到圖卷積神經網絡的學習當中。
商用機器人 Disinfection Robot 展廳機器人 智能垃圾站 輪式機器人底盤 迎賓機器人 移動機器人底盤 講解機器人 紫外線消毒機器人 大屏機器人 霧化消毒機器人 服務機器人底盤 智能送餐機器人 霧化消毒機 機器人OEM代工廠 消毒機器人排名 智能配送機器人 圖書館機器人 導引機器人 移動消毒機器人 導診機器人 迎賓接待機器人 前臺機器人 導覽機器人 酒店送物機器人 云跡科技潤機器人 云跡酒店機器人 智能導診機器人 |